Abstract

This study examined the role of TREM2 in macrophage regulation using a well-established bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model. TREM2 insufficiency was induced by intratracheal treatment with TREM2-specific siRNA. The effects of TREM2 on IPF were evaluated using histological staining and molecular biological methods. TREM2 expression levels were significantly elevated in the lungs of IPF patients and mice with BLM-induced pulmonary fibrosis mice. Bioinformatics analysis revealed that IPF patients with higher TREM2 expression had a shorter survival time, and that TREM2 expression was closely associated with fibroblasts and M2 macrophages. Gene Ontology (GO) enrichment analysis showed that found TREM2-related differentially expressed genes (DEGs) were associated with inflammatory responses, extracellular matrix (ECM) and collagen formation. Single-cell RNA sequencing analysis revealed that TREM2 was predominantly expressed in macrophages. TREM2 insufficiency inhibited BLM-induced pulmonary fibrosis and M2 macrophage polarization. Mechanistic studies showed that TREM2 insufficiency suppressed the activation of STAT6 and the expression of fibrotic factors such as Fibronectin (Fib), Collagen I (Col I) and α- smooth muscle actin (α-SMA). Our study showed that TREM2 insufficiency might alleviate pulmonary fibrosis possibly through macrophage polarization regulation via STAT6 activation, providing a promising macrophage-related approach for the clinical therapy of pulmonary fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call