Abstract

Aging decreases cognitive functions, especially learning and memory. Neuroinflammation is mediated by microglia and occurs in age-related neurodegenerative diseases. The expression profiles in a dataset of cognitively normal controls (GSE11882) were obtained from the Gene Expression Omnibus (GEO) database. Microarray data were used to explore the expression of age-related genes in the human hippocampus. A total of 120 differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was constructed. A total of 18 key genes were identified by the plugin cytoHubba in Cytoscape software. Two genes with a positive impact on cognition during aging were teased out: triggering receptor expressed on myeloid cells 2 (TREM2) and a scavenger receptor (CD163). Finally, the results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB) verified that the mRNA expression of these two genes was significantly upregulated in aged mice. Moreover, the levels of the inflammatory factors IL-1β and IL-6 were significantly increased. TREM2 and CD163 may be upregulated to alleviate the inflammatory environment resulting from microglial activation in the aging brain, thereby delaying cognitive decline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call