Abstract

Triggering receptor expressed on myeloid cells 2 (TREM2) has been shown with a neuroprotective function against inflammation and neuronal injury in Alzheimer’s disease (AD). However, the TREM2 induced anti-inflammatory mechanism is still not well known. In this study it has been demonstrated that the expression of TREM2 was upregulated in hippocampus of 5xFAD mice, whereas TREM2 knock-out mediated by AAV significantly increased the levels of pro-inflammatory cytokines and aggravated cognitive defect. Additionally, FoxO3a, a downstream member of the PI3K/AKT pathway, could be activated by TREM2 defect via the PI3K/AKT signaling in 5xFAD mice. That suggests TREM2-induced protection is associated with the PI3K-FoxO3a axis. On the contrary, overexpression of TREM2 alleviated the LPS-induced inflammatory response and induced M2 phenotype microglia in vitro. This phenomenon can be abolished by applying the PI3K inhibitor LY294002, suggesting FoxO3a not only participates in TREM2-induced anti-inflammation response, but is also involved in regulating the phenotype of microglia. Taken together, our results show that the protective functions of TREM2, both in inflammatory response and cognitive impairment as well as in the decrease of M1 phenotype microglia, are related to PI3K/AKT/FoxO3a signaling pathway in AD mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call