Abstract

A trellis-coded pulse-position modulation (T-PPM) scheme for direct-detection photon communications over unguided channels is described. The purpose of this signaling method is to combat performance degradation due to the spreading of received signal pulses caused by transmitting laser distortion and the finite area and bandwidth of optical detectors. The T-PPM scheme relies upon use of a set partitioning methodology to increase minimum distance using a simple convolutional encoder. The Viterbi algorithm is used at the receiver to separate the signaling set as part of the demodulation process. It is shown through both analysis and Monte Carlo simulation of an avalanche photodiode based receiver system that T-PPM can restore performance losses due to reduced peak intensity during the detection process. Furthermore, for a large range of background radiation levels, the average number of required signal photons per information bit for T-PPM is smaller than that of uncoded PPM. Specific examples show that for a symbol error rate of 0.001, when the received pulses extend over 4 PPM slot widths, the average laser energy per symbol for 256-ary T-PPM could be reduced by as much as 2 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.