Abstract

The concatenation of an equalizer and a Viterbi (1967) decoder is a powerful means for improving receiver performance in wireless communication systems. A soft-output equalizer increases the impact of this combination by enabling the use of soft-decision Viterbi decoding. It is well known that the maximum a posteriori (MAP) algorithm provides optimal reliability information, but at the cost of substantial complexity. This paper contains the results of an investigation into the design and performance of soft-output adaptive equalization techniques based on suboptimum trellis-based soft-output decoding algorithms. It is shown that the performance improvement relative to hard output equalizers is substantial, while the cost in terms of complexity is modest. A time-division multiple-access (TDMA) cellular system is used as the basis for comparisons. Simulation results and a complexity analysis are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call