Abstract

Trehalose is a common reserve carbohydrate in fungi, whose role has been recently extended to other cellular functions, such as stress tolerance, glycolysis control, sporulation and infectivity of some pathogenic strains. To gain some insight into the role of trehalose during abiotic stress in arbuscular mycorrhizal (AM) fungi, we assessed trehalose content as well as transcriptional regulation and enzyme activity of neutral trehalase and trehalose-6-phosphate phosphatase in Glomus intraradices in response to heat shock, chemical or osmotic stress. Prolonged or intensive exposure to heat or chemical stress, but not osmotic stress, caused an increase of trehalose in the cell. We found this associated with transient up-regulation of the trehalose-6-P phosphatase (GiTPS2) transcript that coincided with moderate increases in enzyme activity. By contrast, there were no changes in neutral trehalase (GiNTH1) RNA accumulation in response to stress treatments, while they promoted, in most cases, an increase in activity. After stress had ceased, trehalose returned to basal concentrations, pointing to a role of neutral trehalase activity in heat shock recovery. A yeast complementation assay confirmed the role of neutral trehalase in thermotolerance. Taken together, these results indicate that trehalose could play a role in AM fungi during the recovery from certain stresses such as heat shock and chemical treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.