Abstract

Trehalose, a stable nonreducing disaccharide, protects biomolecules against environmental stress. However, trehalose production using secretory trehalose synthase (TreS) by Bacillus subtilis has not been well studied. In this study, a mutant TreS was successfully secreted and expressed in B. subtilis WB800N. The extracellular enzyme activity of TreS regulated by the P43 promoter and SPPhoD signal peptide in recombinant B. subtilis WB800N reached 23080.6 ± 1119.4 U/L in a 5-L fermenter after optimizing the culture medium, while xpF, skfA, lytC, and sdpC were knocked out. To reduce maltose consumption, malP and amyE corresponding to maltose transporters were further deleted. To simplify the trehalose production process, we invented a fermentation-coupling biocatalysis process involving recombinant bacteria fermentation to secrete TreS and simultaneous conversion of maltose to trehalose by TreS and found that the conversion rate of maltose to trehalose reached 75.5%, suggesting that this is an efficient strategy for large-scale trehalose production using recombinant B. subtilis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call