Abstract
Trehalose, a stable nonreducing disaccharide, protects biomolecules against environmental stress. However, trehalose production using secretory trehalose synthase (TreS) by Bacillus subtilis has not been well studied. In this study, a mutant TreS was successfully secreted and expressed in B. subtilis WB800N. The extracellular enzyme activity of TreS regulated by the P43 promoter and SPPhoD signal peptide in recombinant B. subtilis WB800N reached 23080.6 ± 1119.4 U/L in a 5-L fermenter after optimizing the culture medium, while xpF, skfA, lytC, and sdpC were knocked out. To reduce maltose consumption, malP and amyE corresponding to maltose transporters were further deleted. To simplify the trehalose production process, we invented a fermentation-coupling biocatalysis process involving recombinant bacteria fermentation to secrete TreS and simultaneous conversion of maltose to trehalose by TreS and found that the conversion rate of maltose to trehalose reached 75.5%, suggesting that this is an efficient strategy for large-scale trehalose production using recombinant B. subtilis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.