Abstract

Protein aggregation has been proved to be a pathological basis accounting for neuronal death caused by either transient global ischemia or oxygen glucose deprivation (OGD), and inhibition of protein aggregation is emerging as a potential strategy of preventing brain damage. Trehalose was found to inhibit protein aggregation caused by neurodegenerative diseases via induction of autophagy, whereas its effect is still elusive on ischemia-induced protein aggregation. In this study, we investigated this issue by using rat model of transient global ischemia and SH-SY5Y model of OGD. We found that pretreatment with trehalose inhibited transient global ischemia-induced neuronal death in the hippocampus CA1 neurons and OGD-induced death in SH-SY5Y cells, which was associated with inhibition of the formation of ubiquitin-labeled protein aggregates and preservation of proteasome activity. In vitro study showed that the protection of trehalose against OGD-induced cell death and protein aggregation in SH-SY5Y cells was reversed when proteasome activity was inhibited by MG-132. Further studies revealed that trehalose prevented OGD-induced reduction of proteasome activity via suppression of both oxidative stress and endoplasmic reticulum stress. Particularly, our results showed that trehalose inhibited OGD-induced autophagy. Therefore, we demonstrated that proteasome dysfunction contributed to protein aggregation caused by ischemic insults and trehalose prevented protein aggregation via preservation of proteasome activity, not via induction of autophagy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.