Abstract

Alzheimer's disease is an irreversible and progressive brain disorder featured by the accumulation of Amyloid-β (Aβ) peptide, which forms insoluble assemblies that builds up into plaques resulting in cognitive decline and memory loss. The formation of fibrillar amyloid deposits is accompanied by conformational changes of the soluble Aβ peptide into β-sheet structures. Strategies to prevent or reduce Aβ aggregation using small molecules such as trehalose have shown beneficial effects under in vitro cell- and in vivo mouse- models. However, the role of trehalose in reducing Aβ peptide aggregation is still not clear. In the present study, using circular dichroism- and fluorescence emission- spectroscopies, we demonstrated that in the presence of trehalose, Aβ peptide adopts more helical content and undergoes a disorder/order conformational transition. Based on our findings, we conclude that trehalose affects the conformation of Aβ peptide to form α-helical structure, which may inhibit the formation of β-sheets and thereby aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.