Abstract

Trehalose is a nonreducing disaccharide, and it plays an intracellular protective role in organisms under various stress conditions. In this study, the trehalose synthesis and its protective role in Pleurotus ostreatus were investigated. As a signal in metabolic regulation, reactive oxygen species (ROS) accumulated in the mycelia of P. ostreatus under heat stress (HS). Furthermore, mycelial growth was significantly inhibited, and the malondialdehyde (MDA) level significantly increased under HS. First, exogenous addition of H2O2 inhibited mycelial growth and elevated the MDA level, while N-acetyl cysteine (NAC) and vitamin C (VC) reduced the MDA level and recovered mycelial growth under HS by scavenging ROS. These results indicated that the mycelial radial growth defect under HS might be partly caused by ROS accumulation. Second, adding NAC and VC to the media resulted in rescued trehalose accumulation, which indicated that ROS has an effect on inducing trehalose synthesis. Third, the mycelial growth was recovered by addition of trehalose to the media after HS, and the MDA level was reduced. This effect was further verified by the overexpression of genes for trehalose-6-phosphate synthase (TPS) and neutral trehalase (NTH), which led to increased and reduced trehalose content, respectively. In addition, adding validamycin A (NTH inhibitor) to the media promoted trehalose accumulation and the recovered mycelial growth after HS. In conclusion, trehalose production was partly induced by ROS accumulation in the mycelia under HS, and the accumulated trehalose could promote the recovery of growth after HS, partly by reducing the MDA level in the mycelia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.