Abstract
Cold atmospheric plasma (CAP) is a unique form of physical plasma that has shown great potential for cancer therapy. CAP uses ionized gas to induce lethal oxidative stress on cancer cells; however, the efficacy of CAP therapy continues to be improved. Here, we report an injectable hydrogel-mediated approach to enhance the anti-tumor efficacy of CAP by regulating the phosphorylation of eIF2α. We discovered that reactive oxygen and nitrogen species (ROS/RNS), two main anti-tumor components in CAP, can lead to lethal oxidative stress on tumor cells. Elevated oxidative stress subsequently induces eIF2α phosphorylation, a pathognomonic marker of immunogenic cell death (ICD). Trehalose, a natural disaccharide sugar, can further enhance CAP-induced ICD by elevating the phosphorylation of eIF2α. Moreover, injectable hydrogel-mediated delivery of CAP/trehalose treatment promoted dendritic cell (DC) maturation, initiating tumor-specific T-cell mediated anti-tumor immune responses. The combination therapy also supported the polarization of tumor-associated macrophages to an M1-like phenotype, reversing the immunosuppressive tumor microenvironment and promoting tumor antigen presentation to T cells. In combination with immune checkpoint inhibitors (i.e., anti-programmed cell death protein 1 antibody, aPD1), CAP/trehalose therapy further inhibited tumor growth. Importantly, our findings also indicated that this hydrogel-mediated local combination therapy engaged the host systemic innate and adaptive immune systems to impair the growth of distant tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.