Abstract

Trehalose 6-phosphate synthase was solubilized from young sorocarps of the cellular slime mold, Dictyostelium discoideum, by a freeze-thaw cycle and was subsequently purified about 160-fold using streptomycin sulfate precipitation, (NH 4) 2SO 4 fractionation, DEAE-cellulose chromatography, heat treatment in the presence of heparin, and molecular sieve chromatography on columns of Bio-Gel A-1.5m. The purified enzyme was maximally active at pH 6.5, showed an absolute specificity for glucose 6-phosphate as glucosyl acceptor and a relative specificity for the glucosyl donor in the order: UDP-glucose, GDP-glucose, and ADP-glucose. Although heparin and chondroitin sulfate activated the synthase, the order of glucosyl donor specificity was not affected. Other activators of trehalose 6-phosphate synthase were KCL, Mg 2+, and EDTA, while detergents had little effect. Although synthase activity was reduced 60 to 80% upon the omission of Mg 2+ from the assay mixture, an absolute dependency for Mg 2+ could not be demonstrated. Evaluation of the apparent K m values for partially purified synthase preparations demonstrated that for each of the synthase substrates, the Line weaver-Burk plots displayed complex bimodal kinetics. Estimation of the Michaelis constants after extrapolation of the straight line portions of these plots yielded values of (a) 0.2 and 3.2 m m glucose 6-phosphate and (b) 0.5 and 2.2 m m UDP-glucose. Comparison of the latter parameters with the cellular levels of UDP-glucose and glucose 6-phosphate in Dictyostelium suggests that if the observed bimodal kinetics are the consequence of multiple kinetically distinct forms of the synthase, the activation of trehalose synthesis during slime mold culmination could provide a rationale for the presence of these isozymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call