Abstract

Irradiation-induced pulmonary fibrosis results from thoracic radiotherapy and severely limits radiotherapy approaches. CD4+ CD25+ FoxP3+ regulatory T cells (Tregs) are involved in experimentally induced murine lung fibrosis. However, the precise contribution of Tregs to irradiation-induced pulmonary fibrosis still remains unclear.We have previously established the mouse model of irradiation-induced pulmonary fibrosis and observed an increased frequency of Tregs during the process. This study aimed to investigate the effects of Treg depletion on irradiation-induced pulmonary fibrosis and on fibrocyte, Th17 cell response and production of multiple cytokines in mice. Treg-depleted mice were generated by intraperitoneal injection with anti-CD25 mAb 2h after 20Gy 60CO γ-ray thoracic irradiation and every 7 days thereafter. Pulmonary fibrosis was semi-quantitatively assessed using Masson’s trichrome staining. The proportions of Tregs, fibrocyte and Th17 cells were detected by flow cytometry. Th1/Th2 cytokines were assessed by Luminex assays. We found that Treg depletion decelerated the process of irradiation-induced pulmonary fibrosis and hindered fibrocyte recruitment to the lung. In response to Treg depletion, the number of CD4+ T lymphocytes and Th17 cells increased. Moreover, Th1/Th2 cytokine balance was disturbed into Th1 dominance upon Treg depletion.Our study demonstrates that Tregs are involved in irradiation-induced pulmonary fibrosis by promoting fibrocyte accumulation, attenuating Th17 response and regulating Th1/Th2 cytokine balance in the lung tissues, which suggests that Tregs may be therapeutically manipulated to decelerate the progression of irradiation-induced pulmonary fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.