Abstract

Subintuitionistic logics are a class of logics defined by using Kripke models with more general conditions than those for intuitionistic logic. In this paper we study predicate logics of this kind by the method of tree-sequent calculus (a special form of Labelled Deductive System). After proving the completeness with respect to some classes of Kripke models, we introduce Hilbert-style axiom systems and prove their completeness through a translation from the tree-sequent calculi. This gives a solution to the problem posed by Restall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.