Abstract

The concept of tight extensions of a metric space is introduced, the existence of an essentially unique maximal tight extension T x —the “tight span,” being an abstract analogon of the convex hull—is established for any given metric space X and its properties are studied. Applications with respect to (1) the existence of embeddings of a metric space into trees, (2) optimal graphs realizing a metric space, and (3) the cohomological dimension of groups with specific length functions are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.