Abstract
Tundra is primarily a habitat for shrub growth, not trees, but growth of prostrate forms of trees has been reported occasionally from the subarctic tundra region. In the light of on-going climate change, climate sensitivity studies of these unique trees are essential to predict vegetation dynamics and potential northward expansion of boreal forest tree species into tundra. Here we studied one of the northernmost Larix Mill. trees and Betula nana L. shrubs (72°N) from the Siberian tundra for the common period 1980-2017. We took advantage of the discovery of a single cohort of prostrate Larix trees within a tundra ecosystem, i.e., ca. 60 km northwards from the northern treeline, and compared climate-growth relationships of the two species. Both woody plants were sensitive to the July temperature, however this relationship was stable across the entire study period (1980-2017) only for Betula nana chronology. Additionally, radial growth of Larix trees became negatively correlated to temperatures during the previous summer. In recent period moisture sensitivity between Larix trees and Betula nana shrubs was contrasting, with generally wetter soil conditions favoring Larix trees growth and dryer conditions promoting Betula nana growth. Our study indicates that Larix trees radial growth in recent years is more sensitive to moisture than to summer air temperatures, whereas temperature sensitivity of Betula nana shrub is stable over time. We provide first detailed insight into the annual resolution on Larix tree growth sensitivity to climate in the heart of the tundra. The potentially higher Betula nana shrub resistance to warmer and drier climate versus Larix trees on a tundra revealed in our study needs to be further examined across habitats of various soil, moisture and permafrost status.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.