Abstract

This article presents a very efficient SLAM algorithm that works by hierarchically dividing a map into local regions and subregions. At each level of the hierarchy each region stores a matrix representing some of the landmarks contained in this region. To keep those matrices small, only those landmarks are represented that are observable from outside the region. A measurement is integrated into a local subregion using O(k2) computation time for k landmarks in a subregion. When the robot moves to a different subregion a full least-square estimate for that region is computed in only O(k3 log n) computation time for n landmarks. A global least square estimate needs O(kn) computation time with a very small constant (12.37 ms for n = 11300). The algorithm is evaluated for map quality, storage space and computation time using simulated and real experiments in an office environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.