Abstract
Study regionThe Jinsha River (JRB) and Han River basins (HRB), China. Study focusDue to challenges in interpreting neural network algorithms in hydrological runoff processes, our research focuses on enhancing the temporal dependency and spatial correlation learning capacities. To address these issues, we proposed a multi-layer spatiotemporal model, i.e., the tree long short-term memory model (treeLSTM), for runoff estimations. Because downstream hydrological stations are affected by their own historical and current upstream rainfall and runoff, the treeLSTM’s horizontal and vertical inputs are historical and upstream rainfall-runoff for temporal and spatial features extraction, respectively. The daily rainfall-runoff from 1992 to 2016 in JRB and that from 2011 to 2020 in HRB are predicted. New hydrological insights for the regionResults of validation periods (2012–2016 in JRB, 2019–2020 in HRB) indicate that the treeLSTM in terms of (JRB: RMSE (root mean square error) = 0.5375, MAPE (mean absolute percent error) = 8.27 %, NSE (Nash–Sutcliffe model efficiency coefficient) = 0.9621; HRB: RMSE = 3.3562, MAPE = 2.91 %, NSE = 0.9934) outperformed the backpropagation neural network (BP) and LSTM models. Therefore, the treeLSTM has considerable advantages in runoff estimation due to its integration of time dependence in historical hydrological data with the spatial correlation of meteorological and hydrological elements, which may be useful for enhancing the physical interpretability of machine learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.