Abstract
An undirected graph is a treelike comparability graph if it admits a transitive orientation such that its transitive reduction is a tree. We show that treelike comparability graphs are distance hereditary. Utilizing this property, we give a linear time recognition algorithm. We then characterize permutation graphs that are treelike. Finally, we consider the Partitioning into Bounded Cliques problem on special subgraphs of treelike permutation graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.