Abstract

We present a real-space computational method called treecode-accelerated Green Iteration (TAGI) for all-electron Kohn-Sham Density Functional Theory. TAGI is based on a reformulation of the Kohn-Sham equations in which the eigenvalue problem in differential form is converted into a fixed-point problem in integral form by convolution with the modified Helmholtz Green's function. In each self-consistent field (SCF) iteration, the fixed-points are computed by Green Iteration, where the discrete convolution sums are efficiently evaluated by a GPU-accelerated barycentric Lagrange treecode. Other techniques used in TAGI include a-priori adaptive mesh refinement, Fejér quadrature, singularity subtraction, gradient-free eigenvalue update, and Anderson mixing to accelerate convergence of the SCF and Green Iterations. Ground state energy computations of several atoms (Li, Be, O) and small molecules (H2, CO, C6H6) demonstrate TAGI's ability to efficiently achieve chemical accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call