Abstract

This paper proposes an adaptive multicast scheme for mobile ad hoc networks, called tree-based mesh with k-hop redundant paths (TBM k ), in which path redundancy is controlled depending on the status of the network such as traffic and mobility. The proposed scheme constructs a multicast tree and adds some additional links/nodes to the multicast structure as needed to support redundancy. TBM k includes all k- or smaller-hop paths between tree nodes to provide alternative paths among the nodes. TBM k enables tradeoffs between multicast tree (TBM0) and flooding (TBM ∞ ) by providing variable density of redundant paths. When the network is unstable and node mobility is high, a large k is chosen to provide more robust delivery of multicast packets; otherwise, a small k is chosen to reduce the control overhead. Obviously, k controls the density of redundant paths in the proposed TBM k algorithm that is a distributed algorithm to locally discover k-hop redundant paths. According to the performance evaluation results, the packet loss ratio of TBM k is less than 3 percent with k of 1, 2 and 3 while that of the multicast tree is 14 ~ 18 percent at the node speed range of 0 ~ 20 m/sec; i.e., the packet delivery performance is improved by a factor of up to 6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.