Abstract
Tree-structured models have been widely used because they function as interpretable prediction models that offer easy data visualization. A number of tree algorithms have been developed for univariate response data and can be extended to analyze multivariate response data. We propose a tree algorithm by combining the merits of a tree-based model and a mixed-effects model for longitudinal data. We alleviate variable selection bias through residual analysis, which is used to solve problems that exhaustive search approaches suffer from, such as undue preference to split variables with more possible splits, expensive computational cost, and end-cut preference. Most importantly, our tree algorithm discovers trends over time on each of the subspaces from recursive partitioning, while other tree algorithms predict responses. We investigate the performance of our algorithm with both simulation and real data studies. We also develop an R package melt that can be used conveniently and freely. Additional results are provided as online supplementary material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.