Abstract
BackgroundPrevious studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition.Methodology/Principal FindingsWe assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin∶N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin∶N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not.Conclusions/SignificanceAlthough some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils.
Highlights
Organic matter inputs to soil come primarily from plants, for example via rhizodeposition and litter fall
Since plants exhibit broad variation in their natural history and physiology [1,2], it is likely that differences in plant species traits will create distinctive soil environments and biotic communities [3]
Pot and field experiments have shown that soil temperature, soil moisture, and microbial physiology and community composition differ in soil planted with different grassland plant species [2,10,11,12]
Summary
Organic matter inputs to soil come primarily from plants, for example via rhizodeposition and litter fall. Large-scale common garden experiments have observed differences in soil properties, such as pH, carbon (C) content, inorganic N concentrations, and earthworm biomass, among tree species, which related to plant species traits including leaf litter calcium concentration and natural history [18,19,20,21]. These plant species effects on soils can have positive, neutral, or negative feedbacks to the plant species, which depends in part on whether the plant is an early- or late-successional species [22,23,24,25]. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.