Abstract

Generally, species with broad niches also show large range sizes. We investigated the relationship between hydrological niche breadth and geographic range size for Amazonian tree species seeking to understand the role of habitat specialization to Amazonian wetlands and upland forests on the current distribution of tree species. We obtained 571,092 valid occurrence points from GBIF and SpeciesLink to estimate the range size and the niche breadth of 76% of all known Amazonian tree species (5150 tree species). Hydrological niche breadth was measured on different unidimensional axes defined by (1) total annual precipitation; (2) precipitation seasonality; (3) actual evapotranspiration; and (4) water table depth. Geographic range sizes were estimated using alpha-hull adjustments. General linear models were used to relate niche breadth to range size while contrasting tree species occurring and not occurring in wetlands. The hydrological niche breadth of Amazonian tree species varied mostly along the water table depth axis. The average range size for an Amazonian tree species was 751,000 km2 (median of 154,000 km2 and standard deviation of 1,550,000 km2). Niche breadth-range size relationships for Amazonian tree species were positive for all models, and the explanatory power of the models improved when including whether a species occurred in wetlands or in terrestrial uplands. Wetland species had steeper positive slopes for the niche breadth-range size relationship, and consistently larger range sizes for a given niche breadth. Amazonian tree species varied strongly in hydrological niche breadth and range size, but most species had narrow niche breadths and range sizes. Our results suggest that the South American riverscape may have been acting as a corridor for species dispersal in the Neotropical lowlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call