Abstract

This study aimed to evaluate the relative importance of the factors whereby tree species composition can influence leaf litter dynamics. Leaf litter production and chemical composition were measured in pure and mixed stands of oak ( Quercus petraea Liebl.) and beech ( Fagus sylvatica L.). Pure and mixed leaf litter of both species were incubated in each stand type to assess separately the environmental, litter quality, and litter mixture effects on decomposition. To better understand the environmental effects, ground climate was measured in the different stands and the effects of soil water content on decomposition were evaluated using roofs to simulate drought conditions. Although total leaf litter amounts were not affected by stand composition, leaf decomposition varied with litter quality and with the environmental conditions. In the same environment, oak leaf litter disappeared on average 1.7 times faster than beech leaf litter. Decomposition of oak leaves increased significantly in the mixed-species litterbags. In contrast, the overall mass loss of the mixed litter tallied with the mass loss estimated by examining the decomposition of the component litter separately (additive-effect hypothesis). The effects of stand type appeared in the third year of incubation: leaf mass loss of both species was greater in the beech stand. In addition, soil water content affected leaf decomposition: the oak and beach leaf mass losses dropped by 24% and 17%, respectively, in the dry modality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call