Abstract
The impact of tree species on net N and P mineralization, and soil properties beneath their canopy were studied in a subtropical evergreen broad-leaved forest of northeastern India. Four types of experimental plots were identified based on tree species dominance. The first plot was dominated by Myrica esculenta Buch.-Ham. ex D. Don., the second by Rhododendron arboreum Sm., the third by Neolitsea cassia Koster., and the fourth was a mixed-species plot. Organic carbon content (3.11%) and NH4+-N concentration (11.40 μg·g–1) in the Rhododendron plot, pH (4.64) and total N content (0.89%) in the mixed plot, available P (5.16 μg·g–1) and NO3–-N (8.63 μg·g–1) concentrations in the Neolitsea plot were significantly higher (p < 0.001) than the other plots. All these soil parameters were lowest in the Myrica plot. The net N and P mineralization rates in an annual cycle across different plots ranged between 18.83 and 22.14 μg·g–1·month–1and between 4.54 and 5.87 μg·g–1·month–1, respectively. The flux varied significantly (p < 0.001) among the plots, the lowest and highest being in the Myrica plot and mixed plots, respectively. The differences in soil properties and in net N and P mineralization among different species plots were related to litter quality and yield of the respective species as well as soil microenvironment.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.