Abstract
Tree species composition of forest stand is an important indicator of forest inventory attributes for assessing ecosystem health, understanding successional processes, and digitally displaying forest biodiversity. In this study, we acquired high spatial resolution multispectral and RGB imagery over a subtropical natural forest in southwest China using a fixed-wing UAV system. Digital aerial photogrammetric (DAP) technique was used to generate multi-spectral and RGB derived point clouds, upon which individual tree crown (ITC) delineation algorithms and a machine learning classifier were used to identify dominant tree species. To do so, the structure-from-motion method was used to generate RGB imagery-based DAP point clouds. Then, three ITC delineation algorithms (i.e., point cloud segmentation (PCS), image-based multiresolution segmentation (IMRS), and advanced multiresolution segmentation (AMRS)) were used and assessed for ITC detection. Finally, tree-level metrics (i.e., multispectral, texture and point cloud metrics) were used as metrics in the random forest classifier used to classify eight dominant tree species. Results indicated that the accuracy of the AMRS ITC segmentation was highest (F1-score = 82.5 %), followed by the segmentation using PCS (F1-score = 79.6 %), the IMRS exhibited the lowest accuracy (F1-score = 78.6 %); forest types classification (coniferous and deciduous) had a higher accuracy than the classification of all eight tree species, and the combination of spectral, texture and structural metrics had the highest classification accuracy (overall accuracy = 80.20 %). In the classification of both eight tree species and two forest types, the classification accuracies were lowest when only using spectral metrics, indicated that the texture metrics and point cloud structural metrics had a positive impact on the classification (the overall accuracy and kappa accuracy increased by 1.49–4.46 % and 2.86–6.84 %, respectively).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.