Abstract
The accuracy of the description regarding tree architecture is crucial for data processing. LiDAR technology is an efficient solution for capturing the characteristics of individual trees. The aim of the present study was to analyze tree shape variability in a mixed oak forest consisting of four European white oak species: Quercus petraea, Q. frainetto, Q. pubescens, and Q. robur. Moreover, we tested for association between tree shape and individual heterozygosity and whether oak trees identified as pollen donors in a previous genetic study have a larger size in terms of crown and trunk characteristics than non-donors. The woody structure of a tree was defined by the quantitative structure model (QSM) providing information about topology (branching structure), geometry, and volume. For extracting the 3D point clouds a high-speed 3D scanner (FARO FocusS 70) was used. The crown variables were strongly correlated to each other, the branch volume being influenced by branch length, maximum branch order, and the number of branches but not influenced by diameter at breast height (DBH), trunk length, trunk volume, or tree height. There was no relationship between the individual heterozygosity based on nuclear microsatellite genetic markers and crown and trunk characteristics, respectively. Branch volume, total area, DBH, trunk volume, and the total volume of tree were significantly larger in pollen donors compared to non-donor Q. petraea trees. Thus, the mean branch volume was more than three times higher. Pollen donors had nearly two and half times larger total area in comparison to non-donor individuals. Our results suggest that a thorough characterization of tree phenotype using terrestrial laser scanning may contribute to a better understanding of mating system patterns in oak forests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.