Abstract

Tree-counting methods based on computer vision technologies are low-cost and efficient in contrast to the traditional tree counting methods, which are time-consuming, laborious, and humanly infeasible. This study presents a method for detecting and counting tree seedlings in images using a deep learning algorithm with a high economic value and broad application prospects in detecting the type and quantity of tree seedlings. The dataset was built with three types of tree seedlings: dragon spruce, black chokeberries, and Scots pine. The data were augmented via several data augmentation methods to improve the accuracy of the detection model and prevent overfitting. Then a YOLOv5 object detection network was built and trained with three types of tree seedlings to obtain the training weights. The results of the experiments showed that our proposed method could effectively identify and count the tree seedlings in an image. Specifically, the MAP of the dragon spruce, black chokeberries, and Scots pine tree seedlings were 89.8%, 89.1%, and 95.6%, respectively. The accuracy of the detection model reached 95.10% on average (98.58% for dragon spruce, 91.62% for black chokeberries, and 95.11% for Scots pine). The proposed method can provide technical support for the statistical tasks of counting trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.