Abstract

A dendrochronological network of conifers (Pinus leiophylla, Pinus cembroides, Pinus engelmannii) was developed in the Cumbres de Majalca National Park (CMNP) in Chihuahua, Mexico, to reconstruct historical runoff patterns and examine the impact of ocean–atmosphere phenomena. The CMNP plays a vital role as a runoff source for Conchos River tributaries and groundwater recharge for Chihuahua City and nearby populations. The ring-width chronologies displayed a common signal from 1859 to 2021, with the highest association found between P. engelmannii and P. leiophylla (r = 0.65) and the lowest between P. cembroides and P. engelmannii (r = 0.55). The first principal component explained 75.7% of the variance, and among the species, P. leiophylla exhibited the highest correlation (0.624, p < 0.05) with the accumulated streamflow records from the previous November to July, allowing the construction of a bootstrapped model for runoff reconstruction. The reconstructed streamflow spanned from 1859 to 2014, with an average of 2.732 × 108 m3. Periods of low runoff occurred in 1860–1880, 1940–1960, and 1994–2014, while extreme wet years with high runoff occurred in 1865, 1884, and 1987. The interannual streamflow variability correlated significantly with ENSO indices (SOI, MEI, TRI, and sea surface temperature anomalies), particularly during the winter–spring seasons, indicating that warm phases of the ENSO increased precipitation and runoff. The analysis of return periods revealed probabilities for specific runoff volumes, enabling stakeholders to use the information to develop effective strategies for sustainable water allocation and utilization in the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call