Abstract

Mexican beech (Fagus grandifolia subsp. mexicana) has been classified as an endangered species because of its restricted distribution. The current distribution of Mexican beech, which is considered a Miocene relict, is limited to Tropical Montane Cloud Forests (TMCF) in the mountains of the Sierra Madre Oriental in eastern Mexico. We used dendroclimatic techniques to evaluate the effects of climate variability on the growth of Mexican beech within three forest fragments. The independent chronologies developed for the three sites were 152–178 years long. Cross-sections helped to assess the quality of the crossdating and detect false rings. Over the last 180 years, Mexican beech trees have lower mean radial growth than rates exhibited by other Fagus species. Mexican beech growth appears to be influenced by growing-season temperatures, especially mean maximum temperature. The response appears to be positive at the beginning of the growing season but becomes negative later. These results suggest that the persistence of Fagus-dominated forests in Mexico is dependent on local-scale climatic conditions of the TMCF. Mexican beech forests are associated with micro-climatic conditions that will control the fate of these forests in the face of on-going climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call