Abstract

Tree mono-plantations are susceptible to soil nutrient impoverishment and mixed species plantations have been proposed as a way of maintaining soil fertility while enhancing biodiversity. In the Solomon Islands, mixed species plantations where teak (Tectona grandis) is inter-planted with a local tree species (Flueggea flexuosa) have been used as an alternative to teak mono-plantations and are expected to increase soil microbial diversity and modify microbial biogeochemical processes. In this study, we quantified the abundance of microbial functional genes involved in the nitrogen (N) cycle from soil samples collected in teak, flueggea, and mixed species plantations. Furthermore, we measured soil properties such as pH, total carbon (C) and total N, stable N isotope composition (δ15N), and inorganic N pools. Soil pH and δ15N were higher under teak than under flueggea, which indicates that intercropping teak with flueggea may decrease bacterial activities and potential N losses. Higher C:N ratios were found under mixed species plantations than those under teak, suggesting an enhancement of N immobilization that would help preventing fast N losses. However, inorganic N pools remained unaffected by plant cover. Inter-planting teak with flueggea in mixed species plantations generally increased the relative abundance of denitrification genes and promoted the enrichment of nosZ-harboring denitrifiers. However, it reduced the abundance of bacterial amoA (ammonia monooxygenase) genes compared to teak mono-plantations. The abundance of most denitrification genes correlated with soil total N and C:N ratio, while bacterial and archeal nitrification genes correlated positively with soil NH4+ concentrations. Altogether, these results show that the abundance of bacterial N-cycling functional guilds vary under teak and under mixed species plantations, and that inter-planting teak with flueggea may potentially alleviate N losses associated with nitrification and denitrification and favor N retention. Mixed plantations could also allow an increase in soil C and N stocks without losing the source of income that teak trees represent for local communities.

Highlights

  • In tropical countries such as the Solomon Islands where deforestation rates are high, tree plantations are seen as a way to counteract soil degradation by restoring vegetation cover while decreasing the existing pressure on native forests (Wolfe et al, 2015)

  • Our results show that soil properties and microbial functional genes (MFGs) abundances were both influenced by plantation type

  • Soil δ15N values were significantly higher under teak than under flueggea plantation soils and intercropping teak with flueggea seemed to decrease soil δ15N, not significantly, which indicates that N losses through volatilization, leaching, or denitrification could be reduced in mixed plantations

Read more

Summary

Introduction

In tropical countries such as the Solomon Islands where deforestation rates are high, tree plantations are seen as a way to counteract soil degradation by restoring vegetation cover while decreasing the existing pressure on native forests (Wolfe et al, 2015). In order to maintain soil fertility and to enhance biodiversity, mixed plantations are being promoted and are expected to reduce plant competition for nutrients and increase soil carbon (C) and nitrogen (N) pools (Montagnini, 2000; Balieiro et al, 2008; Vigulu, 2015). With the growing concerns about intensive monoplantations comes an increasing interest in the management of soil fertility and soil bacterial communities to enhance tree growth and productivity (Lacombe et al, 2009). How the establishment of mixed plantations influences the functions of soil bacterial communities, as measured through microbial functional genes (MFGs), and how this relates to nutrient cycling remains to be understood

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call