Abstract

This paper proposes a novel tree kernel-based method with rich syntactic and semantic information for the extraction of semantic relations between named entities. With a parse tree and an entity pair, we first construct a rich semantic relation tree structure to integrate both syntactic and semantic information. And then we propose a context-sensitive convolution tree kernel, which enumerates both context-free and context-sensitive sub-trees by considering the paths of their ancestor nodes as their contexts to capture structural information in the tree structure. An evaluation on the Automatic Content Extraction/Relation Detection and Characterization (ACE RDC) corpora shows that the proposed tree kernel-based method outperforms other state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.