Abstract

A comparative study was conducted to evaluate the influence of seven different levels of irrigation applied to `Arbequina I-18' olive (Olea europaea L.) trees grown in a super-high-density orchard (1,656 trees/ha) in the Sacramento Valley of California. Water was applied differentially by drip irrigation at rates of 15%, 25%, 40%, 57%, 71%, 89%, and 107% evapotranspiration (ETc) in 2002, and 28%, 33%, 55%, 74%, 93%, 117%, and 140% ETc in 2003. Each treatment was replicated three times. Olives were harvested on two different dates each year from each of 21 plots. Three of four harvest dates showed a decrease in maturity index with increasing irrigation levels. Oils were made from olive samples collected from each plot and analyzed for oil quality parameters. Total polyphenol levels and oxidative stability decreased as the trees received more water, especially for the three lowest irrigation treatment levels in 2002, but few differences were noted between treatments in 2003 when all the trees were irrigated more heavily. Average oxidative stability was correlated very closely with total polyphenol content with r2 = 0.98 in 2002 and 0.94 in 2003. In 2002, free fatty acid levels increased and peroxide levels were unchanged, but in 2003, free fatty acid levels were unchanged and peroxide levels decreased in treatments receiving more water. Saturated fatty acids did not significantly change in 2002, due to tree irrigation level. The mono-unsaturated fatty acid levels and oleic–linoleic relationship declined while poly-unsaturated fatty acid levels increased in 2002 with increased irrigation. In 2003, there was no notable difference in the ratio of mono to poly unsaturated fatty acid levels. The individual fatty acid most consistently affected by more irrigation water was stearic, which decreased in both years. Total sterol content (mg·kg–1), percentages of cholesterol and erythrodiol were significantly influenced by tree irrigation levels, but increased in one year and either decreased or were unchanged the next. Oil sensory properties of fruitiness, bitterness, and pungency all declined in oils made from trees receiving more water. The lowest irrigation levels produced oils that were characterized by excessive bitterness, very high pungency, and woody, herbaceous flavors. Intermediate irrigation levels (33% to 40% ETc) produced oils with balance, complexity, and characteristic artichoke, grass, green apple, and some ripe fruit flavors. Higher irrigation levels lowered oil extractability and produced relatively bland oils with significantly less fruitiness and almost no bitterness or pungency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.