Abstract

Background The defoliation of oaks is an urgent problem for forestry in Central Europe. During the last outbreak of the green oak leaf roller(Tortrix viridana) in 2003-2005, we observed fundamental differences in the defoliation level of individual Quercus robur trees in Germany. Some of the trees seem to be somehow “tolerant” (T oaks) against the insects grub while some seem to be conspicuously “susceptible” (S oaks). Within this study we aim to identify the underlying molecular and biochemical mechanisms in oaks responsible for the behavioural preference of T. viridana. By means of combined behavioural experiments and biochemical as well as molecular analysis of preformed and induced defence mechanisms in T and S oak phenotypes, we will identify the metabolic/chemical basis of the observed differences as prerequisite for the selection of candidate genes differentially expressed in tolerant and susceptible trees, respectively, after insects feeding.

Highlights

  • The defoliation of oaks is an urgent problem for forestry in Central Europe

  • Within this study we aim to identify the underlying molecular and biochemical mechanisms in oaks responsible for the behavioural preference of T. viridana

  • With the identification of molecular and biochemical markers of “Tortrix tolerance” in oaks we can contribute to decision support in sustainable forest management

Read more

Summary

Introduction

The defoliation of oaks is an urgent problem for forestry in Central Europe. During the last outbreak of the green oak leaf roller(Tortrix viridana) in 2003-2005, we observed fundamental differences in the defoliation level of individual Quercus robur trees in Germany. Some of the trees seem to be somehow “tolerant” (T oaks) against the insects grub while some seem to be conspicuously “susceptible” (S oaks). Within this study we aim to identify the underlying molecular and biochemical mechanisms in oaks responsible for the behavioural preference of T. viridana. By means of combined behavioural experiments and biochemical as well as molecular analysis of preformed and induced defence mechanisms in T and S oak phenotypes, we will identify the metabolic/chemical basis of the observed differences as prerequisite for the selection of candidate genes differentially expressed in tolerant and susceptible trees, respectively, after insects feeding

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call