Abstract

Understanding how severe disturbances affect forest dynamics is fundamental in ecology, conservation and management. Earthquakes of large magnitude severely impact mountain landscapes, causing strong disturbances on forests. However, it is unknown how the resilience of tree growth after strong earthquakes changes as a function of site factors as elevation. Herein, we investigated the radial-growth responses of surviving trees after the 1950-Zayu-Medog MW 8.6 earthquake which devastated the southeastern Tibetan Plateau. We reconstructed radial growth dynamics of Abies delavayi var. motuoensis after 1950 in six sites selected along an elevational transect located in the Medog valley. Post-earthquake growth responses were detected among 60% of sampled trees in the period 1950–1955, but these responses varied depending on site elevation. Trees at the alpine treeline were less disturbed compared to those located at mid and low elevations. Severe growth suppressions, including the formation of missing rings, occurred during the first three years after the earthquake, and were stronger at low elevations. Growth releases mostly occurred after 1954. Long-term growth release, lasting more than ten years, was mainly observed at low elevations, near talus fans prone to landslides and rock falls. Growth rates returned to pre-earthquake values 45 years after the earthquake occurrence. Our results evidence how tectonic influences on tree growth depend on local factors as elevation, and demonstrate that tree resilience after severe geo-hazards is contingent on site conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call