Abstract

Natural climatic treelines are relatively discrete boundaries in the landscape established at a certain elevation within an otherwise continuous gradient of environmental change. By studying tree rings along elevational transects at and below the upper treeline in the European Alps, we (1) determine whether radial stem growth declines abruptly or gradually, and (2) test climatic influences on trees near treeline by investigating transects for climatically different historical periods. While tree height decreases gradually toward the treeline, there is no such general trend for radial tree growth. We found rather abrupt changes which imply threshold effects of temperature which moved upslope in a wave-like manner as temperatures increased over the past 150 yr. Currently radial tree growth at treeline in the Alps is the same magnitude as at several hundred meters below current treeline. Over short intervals, tree-ring width is more dependent on interannual climatic variability than on altitudinal distance to treeline. We conclude that (1) the elevational response of tree-rings includes a threshold component (a minimal seasonal temperature) and that (2) radial growth is more strongly correlated with year to year variation in climate than with treeline elevation as such. Our data indicate that the current treeline position reflects influences of past climates and not the current climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call