Abstract

Nothofagus pumilio is the dominant tree species at high elevations in the southern Andes between 35° and 55° S. Despite the number of tree-growth studies on this tree species, there is scarce information about the growth patterns and its relation with climatic variability at its lower elevation margin of distribution in the windward side of the Andes. In this study we focus on the altitudinal rear edge of a N. pumilio forest growing on the Pacific side of the northern Patagonian Andes to determine the main temporal patterns of tree radial growth, identify its relations with regional and large-scale climate and to assess the temporal variation of common signal in tree growth at centennial time-scales.A Principal Component Analysis (PCA) between trees for their common period 1850–2010 indicates the existence of more than one pattern of tree growth within this lower altitudinal margin, which exhibit contrasting relations with climate. The tree ring chronology and the PC1 amplitude of tree growth shows negative correlation with maximum temperature during spring-summer while the PC2 shows the contrary. Maps and correlation functions indicate that the PC1 and PC2 patterns of N. pumilio growth are significantly related with high latitude climate variability induced by the Antarctic Oscillation (AAO) during spring-summer in an opposite manner, with the PC1 (PC2) negatively (positively) correlated with the poleward displacement of the storm tracks driven by the mid- and high-latitude dipole pressure in the Southern Hemisphere. The running PCA between the standardized tree ring-width series shows a decreasing trend in the percentage of variance explained by the first mode of tree growth, indicating a centennial scale loss in the common signal of growth within the population, especially since mid-20th century when the behavior of the AAO was unprecedented within the context of the last millennium.Given that the future climatic scenario for northern Patagonia as predicted by models would led to more arid conditions forced by the positive trend of the AAO, we expect that the main pattern of N. pumilio growth at the rear edge of Choshuenco volcano will be negatively affected. Despite the present knowledge about N. pumilio radial growth in treeline environments, specific research is needed to gain insights about the complexity of the climate-growth relationship at its low elevation margin, in order to evaluate anomalies in tree growth patterns in the habitat where N. pumilio grows and competes with other low elevation species more tolerant to warmer conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call