Abstract

The automatic detection of tree crowns and estimation of crown areas from remotely sensed information offer a quick approach for grasping the dynamics of forest ecosystems and are of great significance for both biodiversity and ecosystem conservation. Among various types of remote sensing data, unmanned aerial vehicle (UAV)-acquired RGB imagery has been increasingly used for tree crown detection and crown area estimation; the method has efficient advantages and relies heavily on deep learning models. However, the approach has not been thoroughly investigated in deciduous forests with complex crown structures. In this study, we evaluated two widely used, deep-learning-based tree crown detection and delineation approaches (DeepForest and Detectree2) to assess their potential for detecting tree crowns from UAV-acquired RGB imagery in an alpine, temperate deciduous forest with a complicated species composition. A total of 499 digitized crowns, including four dominant species, with corresponding, accurate inventory data in a 1.5 ha study plot were treated as training and validation datasets. We attempted to identify an effective model to delineate tree crowns and to explore the effects of the spatial resolution on the detection performance, as well as the extracted tree crown areas, with a detailed field inventory. The results show that the two deep-learning-based models, of which Detectree2 (F1 score: 0.57) outperformed DeepForest (F1 score: 0.52), could both be transferred to predict tree crowns successfully. However, the spatial resolution had an obvious effect on the estimation accuracy of tree crown detection, especially when the resolution was greater than 0.1 m. Furthermore, Dectree2 could estimate tree crown areas accurately, highlighting its potential and robustness for tree detection and delineation. In addition, the performance of tree crown detection varied among different species. These results indicate that the evaluated approaches could efficiently delineate individual tree crowns in high-resolution optical images, while demonstrating the applicability of Detectree2, and, thus, have the potential to offer transferable strategies that can be applied to other forest ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.