Abstract

Although laccase has been recognized as a wonder molecule and green enzyme, the use of low yielding fungal strains, poor production, purification, and low enzyme kinetics have hampered its large-scale application. Thus,this study aims to select high yielding fungal strains and optimize the production, purification, and kinetics of laccase of Aspergillus sp. HB_RZ4. The results obtained indicated that Aspergillus sp. HB_RZ4 produced a significantly large amount of laccase under meso-acidophilic shaking conditions in a medium containing glucose and yeast extract. A 25 μM CuSO4 was observed to enhance the enzyme yield. The enzyme was best purified on a Sephadex G-100 column. The purified enzyme resembled laccase of A. flavus. The kinetics of the purified enzyme revealed high substrate specificity and good velocity of reaction,using ABTS as a substrate. The enzyme was observed to be stable over various pH values and temperatures. The peptide structure of the purified enzyme was found to resemble laccase of A. kawachii IFO 4308. The fungus was observed to decolorize various dyes independent of the requirement of a laccase mediator system.Aspergillus sp. HB_RZ4 was observed to be a potent natural producer of laccase, and it decolorized the dyes even in the absence of a laccase mediator system. Thus, it can be used for bioremediation of effluent that contains non-textile dyes.

Highlights

  • Laccase, belonging to a group of enzymes called multicopper blue oxidasehas been noted to exhibit a wide substrate specificity [1]

  • In guaiacol agar (GuA) and gallic acid agar (GAA), tannic acid was replaced with guaiacol (0.01%) and gallic acid (0.5%), respectively

  • Since ABTS was a specific substrate for laccase, its oxidation indicated that the enzyme produced by Aspergillus sp

Read more

Summary

Introduction

Laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2), belonging to a group of enzymes called multicopper blue oxidasehas been noted to exhibit a wide substrate specificity [1].

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call