Abstract
For a clustering algorithm in two-dimension spatial data, the Adaptive Resonance Theory exists not only the shortcomings of pattern drift and vector module of information missing, but also difficultly adapts to spatial data clustering which is irregular distribution. A Tree-ART2 network model was proposed based on the above situation. It retains the memory of old model which maintains the constraint of spatial distance by learning and adjusting LTM pattern and amplitude information of vector. Meanwhile, introducing tree structure to the model can reduce the subjective requirement of vigilance parameter and decrease the occurrence of pattern mixing. It is showed that TART2 network has higher plasticity and adaptability through compared experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.