Abstract

AbstractXylitol is produced by the heterogeneous catalytic hydrogenation of xylose over Raney nickel. The hydrogenation must typically be followed by several purification steps, which makes the chemical production relatively complex and expensive. In this study, activated carbon and bio‐purification treatments of corn stover hydrolysates and subsequent nickel‐catalyzed hydrogenation of xylose to xylitol were investigated. The activated carbon treatment was used to eliminate inhibitory compounds and increase the efficiency of the bio‐purification step. It was found that the glucose could be completely eliminated from the hydrolysate. The hydrogenation reactions of corn stover hydrolysate demonstrated that a high reaction temperature resulted in high sugar alcohol yields and selectivity. At a given temperature, the flow rate had no significant effect on xylitol yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.