Abstract

Delayed vasospasm is a significant cause of morbidity and mortality after subarachnoid hemorrhage (SAH). Proteomic therapeutics offers a new modality in which biologically active proteins or peptides are transduced into cells via covalent linkage to cell permeant peptides (CPPs). The hypothesis of this study was that either intrathecal or intravenous delivery of a phosphopeptide mimetic of the small heat shock-related protein, HSP20, linked to a CPP, would inhibit delayed decreases in cerebral perfusion after experimental SAH in a rat model. This study was conducted in 3 parts: 1) prevention and 2) reversal of delayed decreases in cerebral perfusion via either intrathecal or intravenous administration of a CPP linked to phosphopeptide mimetics of HSP20 (AZX100) and 3) determining the effect of intravenous administration of AZX100 on blood pressure and heart rate. Subarachnoid hemorrhage was induced in rats by endovascular perforation. Subsequently, AZX100 was administered intrathecally via a cisternal catheter or intravenously. Cerebral perfusion was determined by laser Doppler monitoring. Blood pressure was monitored by telemetry in a separate group of naïve animals treated with AZX100 for 24 hours. The maximal decrease in cerebral perfusion occurred 3 days after SAH. Cisternal administration of AZX100 (0.14-0.57 mg/kg) 24 hours after hemorrhage prevented decreases in cerebral perfusion after SAH. Animals receiving lower doses of AZX100 (0.068 mg/kg) or a scrambled sequence of the active HSP20 peptide linked to CPP developed decreases in cerebral perfusion similar to those seen in control animals. Intravenous administration of AZX100 (1.22 mg/kg) 24 hours after hemorrhage prevented the decreases in cerebral perfusion seen in the controls. Intravenous administration (0.175 mg/kg and 1.22 mg/kg) of AZX100 on Days 2 and 3 after SAH reversed decreases in cerebral perfusion as early as Day 3. There was no impact of AZX100 on blood pressure or heart rate at doses up to 2.73 mg/kg. Cisternal administration of AZX100 24 hours after hemorrhage prevented decreases in cerebral perfusion. Intravenous administration of AZX100 also prevented and reversed decreases in cerebral perfusion at doses that did not induce hypotension. Transduction of biologically active motifs of downstream regulators like HSP20 represents a potential novel treatment for SAH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.