Abstract

It was reported that spexin as an adipocyte-secreted protein could regulate obesity and insulin resistance. However, the specific metabolic contribution of spexin to fatty liver remains incompletely understood. Herein, we investigated the effects of spexin on hepatosteatosis and explored the underlying molecular mechanisms. HFD-fed mice were injected with spexin and/or GALR2 antagonist M871, while PA-induced HepG2 cells were treated with spexin in the absence or presence of M871 for 12 h, respectively. Gene expression in liver tissues and hepatocytes was assessed by qRT-PCR and western blotting, respectively. The results showed that body weight, visceral fat content, liver lipid droplet formation, hepatic intracellular triglyceride, and serum triglyceride were reduced in spexin-treated mice. Furthermore, spexin increased the expression of hepatic CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK in vivo and in vitro. Additionally, spexin treatment improved glucose tolerance and insulin sensitivity in mice fed the HFD. Interestingly, these spexin-mediated beneficial effects were abolished by the GALR2 antagonist M871 in mice fed HFD and PA-induced HepG2 cells, suggesting that spexin mitigated HFD-induced hepatic steatosis by activating the GALR2, thereby increasing CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK expression. Taken together, these data suggest that spexin ameliorates NAFLD by improving lipolysis and fatty acid oxidation via activation of GALR2 signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call