Abstract
Hypertension is a risk factor for erectile dysfunction (ED) and both conditions are associated with oxidative stress. Given that nitrite is described to display antioxidant effects, we hypothesized that treatment with nitrite would exert antioxidant effects attenuating both reactive oxygen species (ROS) generation in the corpora cavernosa (CC) and ED induced by hypertension. Two kidney, one clip (2K1C) hypertension was induced in male Wistar rats. Treatment with sodium nitrite (15 mg/kg/day, p.o., gavage) was initiated two weeks after surgery to induce hypertension and maintained for four weeks. Nitrite abrogated both the decrease in intracavernosal pressure and endothelial dysfunction of the CC induced by hypertension. Treatment with nitrite decreased hypertension-induced ROS generation in the CC assessed in situ using the fluorescent dye dihidroethidium (DHE) and with the lucigenin assay. Western immunoblotting analysis revealed that nitrite prevented the increase in Nox1 expression in the CC from 2K1C rats. Decreased concentrations of hydrogen peroxide (H2O2) were found in the CC from hypertensive rats and treatment with nitrite prevented this response. Treatment with nitrite increased the fluorescence of DAF-2DA in the CC from sham-operated rats and restored nitric oxide (NO) levels in the CC from 2K1C rats. In summary, we found novel evidence that nitrite reversed the decrease in intracavernosal pressure induced by 2K1C hypertension. This response was partially attributed to the antioxidant effect of nitrite that blunted ROS generation and endothelial dysfunction in the CC. In addition, nitrite-derived NO may have promoted direct protective actions against hypertension-induced CC dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.