Abstract

The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP) treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs) found at time 0 in control samples (Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium) rapidly changed during storage (with an increase of Vibrio, Photobacterium, and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage). The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax, and Sphingomonas as main OTUs) and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium, and Shewanella as main OTUs) and approached control samples. HP treatments (singly or in combination with activated films) determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella) during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied.

Highlights

  • Fresh fish is a convenient protein ready for preparation of many dishes, but at the same time it is highly perishable

  • Results presented in this study indicate that reduction of the initial microbial load in sea bream fillets and retardation of its growth during refrigerated storage can be improved considerably by application of combined treatments such as films activated with a mixture of thymol plus the bacteriocin enterocin AS-48 and a mild high-hydrostatic pressure (HP) treatment

  • Compared to other methods for bacteriocin addition such as dipping or spraying with bacteriocin solutions, activated films provide the advantage of a slow release of antimicrobials into the medium while at the same time can provide some protection against bacteriocin degradation by tissue proteases or by complex formation with food components (Gálvez et al, 2007)

Read more

Summary

Introduction

Fresh fish is a convenient protein ready for preparation of many dishes, but at the same time it is highly perishable. The main cause of deterioration of fresh fish is the metabolic activity of spoilage seafood microorganisms that provoke degradation of organic molecules and fish tissue, loss of essential fatty acids, fat-soluble vitamins and protein functionality, production of biogenic amines, and formation of off-odors (Gram and Dalgaard, 2002). Previous studies have addressed possible applications of bacteriocins for food preservation, including seafoods (Galvez et al, 2014; Johnson et al, 2017). Immersion in an enterocin AS-48 solution for 1 min delayed bacterial growth and reduced biogenic amine production in sardines during refrigerated storage (Ananou et al, 2014). Spray-application of an enterocin AS-48 solution reduced viable counts of a cocktail of Listeria monocytogenes strains on raw hake and salmon fillets as well as on smoked salmon, an effect that was potentiated by bacteriophage P100 (Baños et al, 2016)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call