Abstract

Recent evidence suggests that lipopolysaccharide (LPS) endotoxaemia in a rat causes significant mucosal injury. Our objective was to determine the effects of glutamine (Gln) on Toll-like receptor 4 (TLR-4), myeloid differentiation factor 88 (Myd88) and tumour necrosis factor (TNF)-alpha receptor-associated factor 6 (TRAF6) expression in intestinal mucosa following LPS endotoxaemia in a rat. For this purpose, male Sprague-Dawley rats were assigned randomly to one of three experimental groups of 10 rats each: (i) control rats underwent intraperitoneal (i.p.) injection of sterile saline once a day; (ii) rats were treated with LPS given i.p. once a day at a dose of 10 mg/kg for 48 h (two doses); and (iii) rats were pretreated with oral Gln given in drinking water (2%) 48 h before and following injection of LPS. Intestinal mucosal parameters, enterocyte proliferation and apoptosis were determined at death. TLR-4 and MyD88 mRNA expression was measured with reverse transcription-polymerase chain reaction (RT-PCR). TLR-4 and MyD88 protein expression were analysed by Western immunoblotting. We observed a statistically significant (P < 0.05) decrease in mucosal weight, mucosal DNA and enterocyte proliferation and a significant increase in enterocyte apoptosis in rat intestine, following LPS administration. These changes were attenuated significantly by dietary Gln. Expression of TLR-4, MyD88 and TRAF6 mRNA in the mucosal ileum was significantly higher in LPS rats versus control rats (P = 0.0006, P = 0.0015, P = 0.03, respectively) as well as TLR-4 and MyD88 protein expression. The administration of Gln reduced significantly the expression of TLR-4, MyD88 and TRAF6 (P = 0.023, P = 0.014, P = 0.035, respectively) mRNA as well as TLR-4 and MyD88 protein expression in ileum compared to LPS animals. We did not find a significant change in the expression of TLR-4, MyD88 or TRAF6 in the jejunum of different groups. We conclude that treatment with Gln was associated with down-regulation of TLR-4, MyD88 and TRAF6 expression and concomitant decrease in intestinal mucosal injury caused by LPS endotoxaemia in a rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.