Abstract
Gallium, when bound to transferrin, has been previously shown to cause tumor cell cytotoxicity by preventing cellular uptake of transferrin bound iron in vitro. Patients treated with constant infusion gallium nitrate for carcinoma show a rise in serum iron within 6 hr of the start of treatment. Serum iron returns to baseline by 24 hr post-infusion. Atomic analysis of iron and gallium content of Sephadex G-150 fractions of treatment sera indicate that about an equimolar amount of gallium and iron are associated with transferrin. These gallium and iron concentrations result in inhibition of transferrin mediated iron uptake in vitro, and in vivo allow for > 90% saturation of transferrin with metal. All seven patients who completed two courses of gallium therapy exhibited hypochromic microcytic anemia (mean fall in hemoglobin 3.5 grams %). Evidence for red cell iron depletion was confirmed by an increase (mean 3.3-fold) in zinc protoporphyrin levels. Since transferrin receptor increases on gallium treated iron requiring cells in vitro, we assessed cell surface transferrin receptor on peripheral blood lymphocytes by measuring fluorescent transferrin receptor antibody binding. A population of highly transferrin receptor positive cells peaks at 48 hr into the infusion. DNA analysis as well as double staining indicate the majority of transferrin receptor positive cells are unstimulated B lymphocytes. These studies provide the first documentation that constant infusion gallium treatment results in significant interference with iron metabolism and evidence for tissue iron depletion in vivo. These changes may correlate with therapeutic effects of gallium such as tumor response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.