Abstract

Oxidative stress induces apoptosis in endothelial cells (ECs). Reactive oxygen species (ROS) promote cell death by regulating the activity of various mitogen-activated protein kinases (MAPKs) in ECs. The present study investigated the effects of MAPK inhibitors on cell survival and glutathione (GSH) levels upon H2O2 treatment in calf pulmonary artery ECs (CPAECs). H2O2 treatment inhibited the growth and induced the death of CPAECs, as well as causing GSH depletion and the loss of mitochondrial membrane potential (MMP). While treatment with the MEK or JNK inhibitor impaired the growth of H2O2-treated CPAECs, treatment with the p38 inhibitor attenuated this inhibition of growth. Additionally, JNK inhibitor treatment increased the proportion of sub-G1 phase cells in H2O2-treated CPAECs and further decreased the MMP. However, treatment with a p38 inhibitor reversed the effects of H2O2 treatment on cell growth and the MMP. Similarly, JNK inhibitor treatment further increased, whereas p38 inhibitor treatment decreased, the proportion of GSH-depleted cells in H2O2-treated CPAECs. Each of the MAPK inhibitors affected cell survival, and ROS or GSH levels differently in H2O2-untreated, control CPAECs. The data suggest that the exposure of CPAECs to H2O2 caused the cell growth inhibition and cell death through GSH depletion. Furthermore, JNK inhibitor treatment further enhanced, whereas p38 inhibitors attenuated, these effects. Thus, the results of the present study suggest a specific protective role for the p38 inhibitor, and not the JNK inhibitor, against H2O2-induced cell growth inhibition and cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call