Abstract
In current clinical practice, several treatment methods, including neoadjuvant therapy, are being developed to improve overall survival or local recurrence rates for locally advanced rectal cancer. The response to neoadjuvant therapy is usually evaluated using imaging data collected before and after preoperative treatment or postsurgical pathological diagnosis. However, there is a need to accurately predict the response to preoperative treatment before treatment is administered. The present study used a deep learning network to examine colonoscopy images and construct a model to predict the response of rectal cancer to neoadjuvant chemotherapy. A total of 53 patients who underwent preoperative chemotherapy followed by radical resection for advanced rectal cancer at the Osaka University Hospital between January 2011 and August 2019 were retrospectively analyzed. A convolutional neural network model was constructed using 403 images from 43 patients as the learning set. The diagnostic accuracy of the deep learning model was evaluated using 84 images from 10 patients as the validation set. The model demonstrated a sensitivity, specificity, accuracy, positive predictive value and area under the curve of 77.6% (38/49), 62.9% (22/33), 71.4% (60/84), 74.5% (38/51) and 0.713, respectively, in predicting a poor response to neoadjuvant therapy. Overall, deep learning of colonoscopy images may contribute to an accurate prediction of the response of rectal cancer to neoadjuvant chemotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.